UNIT-II
(2) SEARCHING TECHNIQUES

2.1 INFORMED SEARCH AND EXPLORATION

2.1.1 Informed (Heuristic) Search Strategies
2.1.2 Heuristic Functions
2.1.3 Local Search Algorithms and Optimization Problems
2.1.4 Local Search in Continuous Spaces
2.1.5 Online Search Agents and Unknown Environments

2.2 CONSTRAINT SATISFACTION PROBLEMS (CSP)

2.2.1 Constraint Satisfaction Problems
2.2.2 Backtracking Search for CSPs
2.2.3 The Structure of Problems

2.3 ADVERSARIAL SEARCH

2.3.1 Games
2.3.2 Optimal Decisions in Games
2.3.3 Alpha-Beta Pruning
2.3.4 Imperfect, Real-time Decisions
2.3.5 Games that include Element of Chance

2.1 INFORMED SEARCH AND EXPLORATION

2.1.1 Informed (Heuristic) Search Strategies

Informed search strategy is one that uses problem-specific knowledge beyond the definition of the problem itself. It can find solutions more efficiently than uninformed strategy.

Best-first search
Best-first search is an instance of general TREE-SEARCH or GRAPH-SEARCH algorithm in which a node is selected for expansion based on an evaluation function $f(n)$. The node with lowest evaluation is selected for expansion, because the evaluation measures the distance to the goal. This can be implemented using a priority-queue, a data structure that will maintain the fringe in ascending order of f-values.

2.1.2. Heuristic functions

A heuristic function or simply a heuristic is a function that ranks alternatives in various search algorithms at each branching step basing on an available information in order to make a decision which branch is to be followed during a search.

The key component of Best-first search algorithm is a heuristic function, denoted by $h(n)$:

$h(n) = \text{estimated cost of the cheapest path from node } n \text{ to a goal node.}$

For example, in Romania, one might estimate the cost of the cheapest path from Arad to Bucharest via a straight-line distance from Arad to Bucharest (Figure 2.1).

Heuristic function are the most common form in which additional knowledge is imparted to the search algorithm.

Greedy Best-first search

Greedy best-first search tries to expand the node that is closest to the goal, on the grounds that this is likely to a solution quickly.

It evaluates the nodes by using the heuristic function $f(n) = h(n)$.

Taking the example of Route-finding problems in Romania, the goal is to reach Bucharest starting from the city Arad. We need to know the straight-line distances to Bucharest from various cities as shown in Figure 2.1. For example, the initial state is $In(Arad)$, and the straight line distance heuristic $h_{\text{SLD}}(In(Arad))$ is found to be 366.

Using the straight-line distance heuristic h_{SLD}, the goal state can be reached faster.

![Figure 2.1 Values of h_{SLD} - straight line distances to Bucharest](image)
Figure 2.2 shows the progress of greedy best-first search using h_{SLD} to find a path from Arad to Bucharest. The first node to be expanded from Arad will be Sibiu, because it is closer to Bucharest than either Zerind or Timisoara. The next node to be expanded will be Fagaras, because it is closest. Fagaras in turn generates Bucharest, which is the goal.
Properties of greedy search

- **Complete??** No—can get stuck in loops, e.g., Iasi ! Neamt ! Iasi ! Neamt !
 - Complete in finite space with repeated-state checking
- **Time??** $O(b^m)$, but a good heuristic can give dramatic improvement
- **Space??** $O(b^m)$—keeps all nodes in memory
- **Optimal??** No

Greedy best-first search is not optimal, and it is incomplete.
The worst-case time and space complexity is $O(b^m)$, where m is the maximum depth of the search space.

A* Search

A* Search is the most widely used form of best-first search. The evaluation function $f(n)$ is obtained by combining

1. $g(n) =$ the cost to reach the node, and
2. $h(n) =$ the cost to get from the node to the goal:

$$f(n) = g(n) + h(n).$$

A* Search is both optimal and complete. A* is optimal if $h(n)$ is an admissible heuristic. The obvious example of admissible heuristic is the straight-line distance h_{SLD}. It cannot be an overestimate. A* Search is optimal if $h(n)$ is an admissible heuristic—that is, provided that $h(n)$ never overestimates the cost to reach the goal.

An obvious example of an admissible heuristic is the straight-line distance h_{SLD} that we used in getting to Bucharest. The progress of an A* tree search for Bucharest is shown in Figure 2.2.

The values of g are computed from the step costs shown in the Romania map (figure 2.1). Also the values of h_{SLD} are given in Figure 2.1.

Recursive Best-first Search (RBFS)

Recursive best-first search is a simple recursive algorithm that attempts to mimic the operation of standard best-first search but using only linear space. The algorithm is shown in figure 2.4.

Its structure is similar to that of recursive depth-first search, but rather than continuing indefinitely down the current path, it keeps track of the f-value of the best alternative path available from any ancestor of the current node. If the current node exceeds this limit, the recursion unwinds back to the alternative path. As the recursion unwinds, RBFS replaces the f-value of each node along the path with the best f-value of its children.

Figure 2.5 shows how RBFS reaches Bucharest.
Figure 2.3 Stages in A* Search for Bucharest. Nodes are labeled with \(f = g + h \). The \(h \)-values are the straight-line distances to Bucharest taken from figure 2.1.
function RECURSIVE-BEST-FIRST-SEARCH(problem) return a solution or failure
 return RFBS(problem, MAKE-NODE(INITIAL-STATE[problem]), ∞)

function RFBS(problem, node, f_limit) return a solution or failure and a new f-cost limit
 if GOAL-TEST[problem](STATE[node]) then return node
 successors ← EXPAND(node, problem)
 if successors is empty then return failure, ∞
 for each s in successors do
 f[s] ← max(g(s) + h(s), f[node])
 repeat
 best ← the lowest f-value node in successors
 if f[best] > f_limit then return failure, f[best]
 alternative ← the second lowest f-value among successors
 result, f[best] ← RBFS(problem, best, min(f_limit, alternative))
 if result ≠ failure then return result

Figure 2.4 The algorithm for recursive best-first search
Figure 2.5 Stages in an RBFS search for the shortest route to Bucharest. The f-limit value for each recursive call is shown on top of each current node. (a) The path via Rimnicu Vilcea is followed until the current best leaf (Pitesti) has a value that is worse than the best alternative path (Fagaras). (b) The recursion unwinds and the best leaf value of the forgotten subtree (417) is backed up to Rimnicu Vilcea; then Fagaras is expanded, revealing a best leaf value of 450. (c) The recursion unwinds and the best leaf value of the forgotten subtree (450) is backed up to Fagaras; then Rimnicu Vilcea is expanded. This time because the best alternative path (through Timisoara) costs at least 447, the expansion continues to Bucharest.

RBFS Evaluation:
- RBFS is a bit more efficient than IDA*
 - Still excessive node generation (mind changes)
Like A*, optimal if $h(n)$ is admissible
Space complexity is $O(bd)$.
- IDA* retains only one single number (the current f-cost limit)
Time complexity difficult to characterize
- Depends on accuracy if $h(n)$ and how often best path changes.
IDA* en RBFS suffer from too little memory.

2.1.2 Heuristic Functions
A heuristic function or simply a heuristic is a function that ranks alternatives in various search algorithms at each branching step basing on an available information in order to make a decision which branch is to be followed during a search.

![8-puzzle](image)

Figure 2.6 A typical instance of the 8-puzzle.
The solution is 26 steps long.

The 8-puzzle
The 8-puzzle is an example of Heuristic search problem. The object of the puzzle is to slide the tiles horizontally or vertically into the empty space until the configuration matches the goal configuration(Figure 2.6).
The average cost for a randomly generated 8-puzzle instance is about 22 steps. The branching factor is about 3. (When the empty tile is in the middle,there are four possible moves;when it is in the corner there are two;and when it is along an edge there are three). This means that an exhaustive search to depth 22 would look at about 3^{22} approximately = 3.1 X 10^{10} states.
By keeping track of repeated states,we could cut this down by a factor of about 170,000,because there are only 9!/2 = 181,440 distinct states that are reachable. This is a manageable number ,but the corresponding number for the 15-puzzle is roughly 10^{13}.
If we want to find the shortest solutions by using A*,we need a heuristic function that never overestimates the number of steps to the goal.
The two commonly used heuristic functions for the 15-puzzle are :
1. $h_1 = \text{the number of misplaced tiles}.$
For figure 2.6 ,all of the eight tiles are out of position,so the start state would have \(h_1 = 8 \). h_1 is an admissible heuristic.
(2) h_2 = the sum of the distances of the tiles from their goal positions. This is called the city block distance or Manhattan distance. h_2 is admissible, because all any move can do is move one tile one step closer to the goal. Tiles 1 to 8 in start state give a Manhattan distance of

$$h_2 = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18.$$

Neither of these overestimates the true solution cost, which is 26.

The Effective Branching Factor

One way to characterize the quality of a heuristic is the effective branching factor b^*. If the total number of nodes generated by A* for a particular problem is N, and the solution depth is d, then b^* is the branching factor that a uniform tree of depth d would have to have in order to contain $N+1$ nodes. Thus,

$$N + 1 = 1 + b^* + (b^*)^2 + \ldots + (b^*)^d$$

For example, if A* finds a solution at depth 5 using 52 nodes, then effective branching factor is 1.92. A well designed heuristic would have a value of b^* close to 1, allowing fair size problems to be solved.

To test the heuristic functions h_1 and h_2, 1200 random problems were generated with solution lengths from 2 to 24 and solved them with iterative deepening search and with A* search using both h_1 and h_2. Figure 2.7 gives the average number of nodes expanded by each strategy and the effective branching factor.

The results suggest that h_2 is better than h_1, and is far better than using iterative deepening search. For a solution length of 14, A* with h_2 is 30,000 times more efficient than uninformed iterative deepening search.

<table>
<thead>
<tr>
<th>d</th>
<th>IDS</th>
<th>$A^*(h_1)$</th>
<th>$A^*(h_2)$</th>
<th>IDS</th>
<th>$A^*(h_1)$</th>
<th>$A^*(h_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>2.45</td>
<td>1.79</td>
<td>1.79</td>
</tr>
<tr>
<td>4</td>
<td>112</td>
<td>13</td>
<td>12</td>
<td>2.87</td>
<td>1.48</td>
<td>1.45</td>
</tr>
<tr>
<td>6</td>
<td>680</td>
<td>20</td>
<td>18</td>
<td>2.73</td>
<td>1.34</td>
<td>1.30</td>
</tr>
<tr>
<td>8</td>
<td>6384</td>
<td>39</td>
<td>25</td>
<td>2.80</td>
<td>1.35</td>
<td>1.24</td>
</tr>
<tr>
<td>10</td>
<td>47127</td>
<td>93</td>
<td>39</td>
<td>2.79</td>
<td>1.38</td>
<td>1.22</td>
</tr>
<tr>
<td>12</td>
<td>3644035</td>
<td>227</td>
<td>73</td>
<td>2.78</td>
<td>1.42</td>
<td>1.24</td>
</tr>
<tr>
<td>14</td>
<td>–</td>
<td>539</td>
<td>113</td>
<td>–</td>
<td>–</td>
<td>1.44</td>
</tr>
<tr>
<td>16</td>
<td>–</td>
<td>1301</td>
<td>211</td>
<td>–</td>
<td>–</td>
<td>1.45</td>
</tr>
<tr>
<td>18</td>
<td>–</td>
<td>3056</td>
<td>363</td>
<td>–</td>
<td>–</td>
<td>1.46</td>
</tr>
<tr>
<td>20</td>
<td>–</td>
<td>7276</td>
<td>676</td>
<td>–</td>
<td>–</td>
<td>1.47</td>
</tr>
<tr>
<td>22</td>
<td>–</td>
<td>18094</td>
<td>1219</td>
<td>–</td>
<td>–</td>
<td>1.48</td>
</tr>
<tr>
<td>24</td>
<td>–</td>
<td>39135</td>
<td>1641</td>
<td>–</td>
<td>–</td>
<td>1.48</td>
</tr>
</tbody>
</table>

Figure 2.7 Comparison of search costs and effective branching factors for the ITERATIVE-DEEPENING-SEARCH and A* Algorithms with h_1, and h_2. Data are average over 100 instances of the 8-puzzle, for various solution lengths.

Inventing admissible heuristic functions

- **Relaxed problems**
 - A problem with fewer restrictions on the actions is called a relaxed problem.
 - The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem.
 - If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution.
If the rules are relaxed so that a tile can move to *any adjacent square*, then $h_2(n)$ gives the shortest solution.

2.1.3 LOCAL SEARCH ALGORITHMS AND OPTIMIZATION PROBLEMS

- In many optimization problems, the path to the goal is irrelevant; the goal state itself is the solution.
- For example, in the 8-queens problem, what matters is the final configuration of queens, not the order in which they are added.
- In such cases, we can **use local search algorithms**. They operate using a **single current state** (rather than multiple paths) and generally move only to neighbors of that state.
- The important applications of these class of problems are (a) integrated-circuit design, (b) Factory-floor layout, (c) job-shop scheduling, (d) automatic programming, (e) telecommunications network optimization, (f) Vehicle routing, and (g) portfolio management.

Key advantages of Local Search Algorithms

1. They use very little memory – usually a constant amount; and
2. they can often find reasonable solutions in large or infinite (continuous) state spaces for which systematic algorithms are unsuitable.

OPTIMIZATION PROBLEMS

In addition to finding goals, local search algorithms are useful for solving pure **optimization problems**, in which the aim is to find the **best state** according to an **objective function**.

State Space Landscape

To understand local search, it is better explained using **state space landscape** as shown in figure 2.8.

A landscape has both “**location**” (defined by the state) and “**elevation**” (defined by the value of the heuristic cost function or objective function).

If elevation corresponds to **cost**, then the aim is to find the **lowest valley** – a **global minimum**; if elevation corresponds to an **objective function**, then the aim is to find the **highest peak** – a **global maximum**.

Local search algorithms explore this landscape. A complete local search algorithm always finds a **goal** if one exists; an **optimal** algorithm always finds a **global minimum/maximum**.
Figure 2.8 A one dimensional state space landscape in which elevation corresponds to the objective function. The aim is to find the global maximum. Hill climbing search modifies the current state to try to improve it, as shown by the arrow. The various topographic features are defined in the text.

Hill-climbing search

The hill-climbing search algorithm as shown in figure 2.9, is simply a loop that continually moves in the direction of increasing value – that is, **uphill**. It terminates when it reaches a “**peak**” where no neighbor has a higher value.

```plaintext
function HILL-CLIMBING( problem ) return a state that is a local maximum
  input: problem, a problem
  local variables: current, a node.
                  neighbor, a node.
  
  current ← MAKE-NODE(INITIAL-STATE[problem])
  loop do
    neighbor ← a highest valued successor of current
    if VALUE[neighbor] ≤ VALUE[current] then return STATE[current]
    current ← neighbor
```

Figure 2.9 The hill-climbing search algorithm (steepest ascent version), which is the most basic local search technique. At each step the current node is replaced by the best neighbor, the neighbor with the highest VALUE. If the heuristic cost estimate h is used, we could find the neighbor with the lowest h.

Hill-climbing is sometimes called greedy local search because it grabs a good neighbor state without thinking ahead about where to go next. Greedy algorithms often perform quite well.

Problems with hill-climbing

Hill-climbing often gets stuck for the following reasons:

- **Local maxima**: a local maximum is a peak that is higher than each of its neighboring states, but lower than the global maximum. Hill-climbing algorithms that reach the vicinity
of a local maximum will be drawn upwards towards the peak, but will then be stuck with nowhere else to go

- **Ridges**: A ridge is shown in Figure 2.10. Ridges result in a sequence of local maxima that is very difficult for greedy algorithms to navigate.
- **Plateaux**: A plateau is an area of the state space landscape where the evaluation function is flat. It can be a flat local maximum, from which no uphill exit exists, or a shoulder, from which it is possible to make progress.

![Illustration of why ridges cause difficulties for hill-climbing](image)

Figure 2.10 Illustration of why ridges cause difficulties for hill-climbing. The grid of states (dark circles) is superimposed on a ridge rising from left to right, creating a sequence of local maxima that are not directly connected to each other. From each local maximum, all available options point downhill.

Hill-climbing variations

- **Stochastic hill-climbing**
 - Random selection among the uphill moves.
 - The selection probability can vary with the steepness of the uphill move.
- **First-choice hill-climbing**
 - cfr. stochastic hill climbing by generating successors randomly until a better one is found.
- **Random-restart hill-climbing**
 - Tries to avoid getting stuck in local maxima.

Simulated annealing search

A hill-climbing algorithm that never makes “downhill” moves towards states with lower value (or higher cost) is guaranteed to be incomplete, because it can stick on a local maximum. In contrast, a purely random walk—that is, moving to a successor chosen uniformly at random from the set of successors—is complete, but extremely inefficient.

Simulated annealing is an algorithm that combines hill-climbing with a random walk in some way that yields both efficiency and completeness.

Figure 2.11 shows simulated annealing algorithm. It is quite similar to hill climbing. Instead of picking the best move, however, it picks the random move. If the move improves the situation, it is always accepted. Otherwise, the algorithm accepts the move with some probability less than 1. The probability decreases exponentially with the “badness” of the move—the amount \(\Delta E \) by which the evaluation is worsened.
Simulated annealing was first used extensively to solve VLSI layout problems in the early 1980s. It has been applied widely to factory scheduling and other large-scale optimization tasks.

```python
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
    inputs: problem, a problem
             schedule, a mapping from time to “temperature”
    local variables: current, a node
                     next, a node
                     T, a “temperature” controlling prob. of downward steps
    current ← MAKE-NODE(Initial-State[problem])
    for t ← 1 to ∞ do
        T ← schedule[t]
        if T = 0 then return current
        next ← a randomly selected successor of current
        ΔE ← VALUE[next] - VALUE[current]
        if ΔE > 0 then current ← next
        else current ← next only with probability e^{ΔE/T}
```

Figure 2.11 The simulated annealing search algorithm, a version of stochastic hill climbing where some downhill moves are allowed.

Genetic algorithms

A Genetic algorithm (or GA) is a variant of stochastic beam search in which successor states are generated by combining two parent states, rather than by modifying a single state. Like beam search, GAs begin with a set of k randomly generated states, called the population. Each state, or individual, is represented as a string over a finite alphabet — most commonly, a string of 0s and 1s. For example, an 8-queens state must specify the positions of 8 queens, each in a column of 8 squares, and so requires 8 x log₂ 8 = 24 bits.

```
= stochastic local beam search + generate successors from pairs of states

24748552  24  31%  32752411  32752411  32752411  32748552
32752411  23  26%  24748552  24752411  24752411
24415124  20  26%  32752411  32752412  32552124
32543213  11  14%  24415124  24415411  24415411

Fitness  Selection  Pairs  Cross-Over  Mutation
```

Figure 2.12 The genetic algorithm. The initial population in (a) is ranked by the fitness function in (b), resulting in pairs for mating in (c). They produce offspring in (d), which are subjected to
mutation in (e).

Figure 2.12 shows a population of four 8-digit strings representing 8-queen states. The production of the next generation of states is shown in Figure 2.12(b) to (e). In (b) each state is rated by the evaluation function or the fitness function. In (c), a random choice of two pairs is selected for reproduction, in accordance with the probabilities in (b). Figure 2.13 describes the algorithm that implements all these steps.

```plaintext
function GENETIC_ALGORITHM(population, FITNESS-FN) return an individual
  input: population, a set of individuals
  FITNESS-FN, a function which determines the quality of the individual
  repeat
    new_population ← empty set
    loop for i from 1 to SIZE(population) do
      x ← RANDOM_SELECTION(population, FITNESS_FN)
      y ← RANDOM_SELECTION(population, FITNESS_FN)
      child ← REPRODUCE(x, y)
      if (small random probability) then child ← MUTATE(child)
      add child to new_population
    end
    population ← new_population
  until some individual is fit enough or enough time has elapsed
  return the best individual
```

Figure 2.13 A genetic algorithm. The algorithm is same as the one diagrammed in Figure 2.12, with one variation: each mating of two parents produces only one offspring, not two.

2.1.4 LOCAL SEARCH IN CONTINUOUS SPACES

- We have considered algorithms that work only in discrete environments, but real-world environments are continuous.
- Local search amounts to maximizing a continuous objective function in a multi-dimensional vector space.
- This is hard to do in general.
- Can immediately retreat
 - Discretize the space near each state
 - Apply a discrete local search strategy (e.g., stochastic hill climbing, simulated annealing)
- Often resists a closed-form solution
 - Fake up an empirical gradient
 - Amounts to greedy hill climbing in discretized state space
- Can employ Newton-Raphson Method to find maxima
- Continuous problems have similar problems: plateaus, ridges, local maxima, etc.

2.1.5 Online Search Agents and Unknown Environments

Online search problems

- Offline Search (all algorithms so far)
- Compute complete solution, ignoring environment. Carry out action sequence

- **Online Search**
 - Interleave computation and action
 - Compute—Act—Observe—Compute—

- **Online search good**
 - For dynamic, semi-dynamic, stochastic domains
 - Whenever offline search would yield exponentially many contingencies

- **Online search necessary for exploration problem**
 - States and actions unknown to agent
 - Agent uses actions as experiments to determine what to do

Examples
- Robot exploring unknown building
- Classical hero escaping a labyrinth

- **Assume agent knows**
 - Actions available in state \(s \)
 - Step-cost function \(c(s,a,s') \)
 - State \(s \) is a goal state
 - When it has visited a state \(s \) previously
 - Admissible heuristic function \(h(s) \)
 - Note that agent doesn’t know outcome state \((s') \) for a given action \((a) \) until it tries the action (and all actions from a state \(s \))
 - Competitive ratio compares actual cost with cost agent would follow if it knew the search space
 - No agent can avoid dead ends in all state spaces
 - Robotics examples: Staircase, ramp, cliff, terrain
 - Assume state space is safely explorable—some goal state is always reachable

Online Search Agents

- Interleaving planning and acting hamstrings offline search
 - \(A^\ast \) expands arbitrary nodes without waiting for outcome of action
 - Online algorithm can expand only the node it physically occupies
 - Best to explore nodes in physically local order
 - Suggests using depth-first search
 - Next node always a child of the current

- When all actions have been tried, can’t just drop state
 - Agent must physically backtrack

- **Online Depth-First Search**
 - May have arbitrarily bad competitive ratio (wandering past goal)
 - Okay for exploration; bad for minimizing path cost

- **Online Iterative-Deepening Search**
 - Competitive ratio stays small for state space a uniform tree

Online Local Search

- **Hill Climbing Search**
 - Also has physical locality in node expansions
 - Is, in fact, already an online search algorithm
 - Local maxima problematic: can’t randomly transport agent to new state in
effort to escape local maximum

- Random Walk as alternative
 - Select action at random from current state
 - Will eventually find a goal node in a finite space
 - Can be very slow, esp. if “backward” steps as common as “forward”

- Hill Climbing with Memory instead of randomness
 - Store “current best estimate” of cost to goal at each visited state Starting estimate is just $h(s)$
 - Augment estimate based on experience in the state space Tends to “flatten out” local minima, allowing progress Employ optimism under uncertainty
 - Untried actions assumed to have least-possible cost Encourage exploration of untried paths

Learning in Online Search

- Rampant ignorance a ripe opportunity for learning Agent learns a “map” of the environment
- Outcome of each action in each state
- Local search agents improve evaluation function accuracy
- Update estimate of value at each visited state
- Would like to infer higher-level domain model
- Example: “Up” in maze search increases y-coordinate Requires
- Formal way to represent and manipulate such general rules (so far, have hidden rules within the successor function)
- Algorithms that can construct general rules based on observations of the effect of actions

2.2 CONSTRAINT SATISFACTION PROBLEMS (CSP)

A Constraint Satisfaction Problem (or CSP) is defined by a set of variables X_1, X_2, \ldots, X_n, and a set of constraints C_1, C_2, \ldots, C_m. Each variable X_i has a nonempty domain D_i of possible values. Each constraint C_i involves some subset of variables and specifies the allowable combinations of values for that subset. A State of the problem is defined by an assignment of values to some or all of the variables, $\{X_i = v_i, X_j = v_j, \ldots\}$. An assignment that does not violate any constraints is called a consistent or legal assignment. A complete assignment is one in which every variable is mentioned, and a solution to a CSP is a complete assignment that satisfies all the constraints. Some CSPs also require a solution that maximizes an objective function.

Example for Constraint Satisfaction Problem:

Figure 2.15 shows the map of Australia showing each of its states and territories. We are given the task of coloring each region either red, green, or blue in such a way that the neighboring regions have the same color. To formulate this as CSP, we define the variable to be the regions : WA, NT, Q, NSW, V, SA, and T. The domain of each variable is the set {red, green, blue}. The constraints require neighboring regions to have distinct colors; for example, the allowable combinations for WA and NT are the pairs $(\text{red, green}), (\text{red, blue}), (\text{green, red}), (\text{green, blue}), (\text{blue, red}), (\text{blue, green})$. The constraint can also be represented more succinctly as the inequality WA not = NT, provided the constraint satisfaction algorithm has some way to evaluate such expressions.) There are many possible solutions such as $\{WA = \text{red}, \text{ NT = green}, Q = \text{red}, \text{ NSW = green}, V = \text{red}, \text{ SA = blue}, \text{T = red}\}$.

Powered By www.technoscriptz.com
It is helpful to visualize a CSP as a constraint graph, as shown in Figure 2.15(b). The nodes of the graph correspond to variables of the problem and the arcs correspond to constraints.

![Constraint Graph](image)

Variables \(WA, NT, Q, NSW, V, SA, T\)

Domains \(D_i = \{\text{red, green, blue}\}\)

Constraints: adjacent regions must have different colors:
- e.g., \(WA \neq NT\) (if the language allows this), or \((WA, NT) \in \{(\text{red, green}), (\text{red, blue}), (\text{green, red}), (\text{green, blue}), \ldots\}\)

Figure 2.15 (a) Principle states and territories of Australia. Coloring this map can be viewed as a constraint satisfaction problem. The goal is to assign colors to each region so that no neighboring regions have the same color.

Figure 2.15 (b) The map coloring problem represented as a constraint graph.

CSP can be viewed as a standard search problem as follows:
- **Initial state**: the empty assignment \(\{}\), in which all variables are unassigned.
- **Successor function**: a value can be assigned to any unassigned variable, provided that it does not conflict with previously assigned variables.
- **Goal test**: the current assignment is complete.
- **Path cost**: a constant cost (e.g., 1) for every step.

Every solution must be a complete assignment and therefore appears at depth \(n\) if there are \(n\) variables.

Depth first search algorithms are popular for CSPs.

Varieties of CSPs
(i) **Discrete variables**

Finite domains

The simplest kind of CSP involves variables that are discrete and have finite domains. Map coloring problems are of this kind. The 8-queens problem can also be viewed as finite-domain CSPs.
CSP, where the variables Q_1, Q_2, \ldots, Q_8 are the positions each queen in columns 1, \ldots, 8 and each variable has the domain \{1, 2, 3, 4, 5, 6, 7, 8\}. If the maximum domain size of any variable in a CSP is d, then the number of possible complete assignments is $O(d^n)$ – that is, exponential in the number of variables. Finite domain CSPs include **Boolean CSPs**, whose variables can be either true or false.

Infinite domains

Discrete variables can also have **infinite domains** – for example, the set of integers or the set of strings. With infinite domains, it is no longer possible to describe constraints by enumerating all allowed combination of values. Instead a constraint language of algebraic inequalities such as $\text{Startjob}_1 + 5 \leq \text{Startjob}_3$.

CSPs with continuous domains

CSPs with continuous domains are very common in real world. For example, in operation research field, the scheduling of experiments on the Hubble Telescope requires very precise timing of observations; the start and finish of each observation and maneuver are continuous-valued variables that must obey a variety of astronomical, precedence and power constraints. The best known category of continuous-domain CSPs is that of **linear programming** problems where the constraints must be linear inequalities forming a convex region. Linear programming problems can be solved in time polynomial in the number of variables.

Varieties of constraints

(i) **unary constraints** involve a single variable.

Example: $\text{SA} \neq \text{green}$

(ii) Binary constraints involve pairs of variables.

Example: $\text{SA} \neq \text{WA}$

(iii) Higher order constraints involve 3 or more variables.

Example: cryptarithmetic puzzles.

![CSP Diagram](image)

Figure 2.16 (a) Cryptarithmetic problem. Each letter stands for a distinct digit; the aim is to find a substitution of digits for letters such that the resulting sum is arithmetically correct, with the added restriction that no leading zeros are allowed. (b) The constraint hypergraph for the cryptarithmetic problem, showing the `AllDiff` constraint as well as the column addition constraints. Each constraint is a square box connected to the variables it contains.
2.2.2 Backtracking Search for CSPs

The term **backtracking search** is used for depth-first search that chooses values for one variable at a time and backtracks when a variable has no legal values left to assign. The algorithm is shown in figure 2.17.

```plaintext
function BACKTRACKING-SEARCH(csp) returns solution/failure
    return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln/failure
    if assignment is complete then return assignment
    var ← SELECT-UNASSIGNED-VARIABLE(Variables[csp], assignment, csp)
    for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
        if value is consistent with assignment given Constraints[csp] then
            add {var = value} to assignment
            result ← RECURSIVE-BACKTRACKING(assignment, csp)
            if result ≠ failure then return result
            remove {var = value} from assignment
    return failure
```

Figure 2.17 A simple backtracking algorithm for constraint satisfaction problem. The algorithm is modeled on the recursive depth-first search.

Figure 2.17(b) Part of search tree generated by simple backtracking for the map coloring problem.

Propagating information through constraints

So far our search algorithm considers the constraints on a variable only at the time that the variable is chosen by `SELECT-UNASSIGNED-VARIABLE`. But by looking at some of the constraints earlier in the search, or even before the search has started, we can drastically reduce the search space.

Forward checking

One way to make better use of constraints during search is called **forward checking**. Whenever a variable `X` is assigned, the forward checking process looks at each unassigned variable `Y` that is connected to `X` by a constraint and deletes from `Y`’s domain any value that is inconsistent with the value chosen for `X`. Figure 5.6 shows the progress of a map-coloring search with forward checking.
Constraint propagation

Although forward checking detects many inconsistencies, it does not detect all of them. **Constraint propagation** is the general term for propagating the implications of a constraint on one variable onto other variables.

Arc Consistency

- One method of constraint propagation is to enforce **arc consistency**
 - Stronger than forward checking
 - Fast
- **Arc** refers to a **directed** arc in the constraint graph
- Consider two nodes in the constraint graph (e.g., \(SA\) and \(NSW\))
 - An arc is **consistent** if
 - For every value \(x\) of \(SA\)
 - There is some value \(y\) of \(NSW\) that is consistent with \(x\)
- Examine arcs for consistency in both directions

k-Consistency

- Can define stronger forms of consistency

k-Consistency

A CSP is **\(k\)-consistent** if, for any consistent assignment to \(k-1\) variables, there is a consistent assignment for the \(k\)-th variable

- **1-consistency** (node consistency)
 - Each variable by itself is consistent (has a non-empty domain)
- **2-consistency** (arc consistency)
- **3-consistency** (path consistency)
 - Any pair of adjacent variables can be extended to a third
Local Search for CSPs

- Local search algorithms good for many CSPs
- Use complete-state formulation
 - Value assigned to every variable
 - Successor function changes one value at a time
- Have already seen this
 - Hill climbing for 8-queens problem (AIMA § 4.3)
- Choose values using min-conflicts heuristic
 - Value that results in the minimum number of conflicts with other variables

2.2.3 The Structure of Problems

Problem Structure

- Consider ways in which the structure of the problem’s constraint graph can help find solutions
- Real-world problems require decomposition into subproblems

Independent Subproblems

![Graph of Australian Territories](image1)

- T is not connected
- Coloring T and coloring remaining nodes are independent subproblems
- Any solution for T combined with any solution for remaining nodes solves the problem
- Independent subproblems correspond to connected components of the constraint graph
- Sadly, such problems are rare

Tree-Structured CSPs

![Graph of Tree-Structured CSP](image2)

- In most cases, CSPs are connected
- A simple case is when the constraint graph is a tree
- Can be solved in time linear in the number of variables
 - Order variables so that each parent precedes its children
 - Working “backward,” apply arc consistency between child and parent
 - Working “forward,” assign values consistent with parent

![Graph of Linear Ordering](image3)
2.4 ADVERSARIAL SEARCH

Competitive environments, in which the agent’s goals are in conflict, give rise to adversarial search problems – often known as games.

2.4.1 Games
Mathematical Game Theory, a branch of economics, views any multiagent environment as a game provided that the impact of each agent on the other is “significant”, regardless of whether the agents are cooperative or competitive. In AI, “games” are deterministic, turn-taking, two-player, zero-sum games of perfect information. This means deterministic, fully observable environments in which there are two agents whose actions must alternate and in which the utility values at the end of the game are always equal and opposite. For example, if one player wins the game of chess (+1), the other player necessarily loses (-1). It is this opposition between the agents’ utility functions that makes the situation adversarial.

Formal Definition of Game
We will consider games with two players, whom we will call MAX and MIN. MAX moves first, and then they take turns moving until the game is over. At the end of the game, points are awarded to the winning player and penalties are given to the loser. A game can be formally defined as a search problem with the following components:

- The initial state, which includes the board position and identifies the player to move.
- A successor function, which returns a list of (move, state) pairs, each indicating a legal move and the resulting state.
- A terminal test, which describes when the game is over. States where the game has ended are called terminal states.
- A utility function (also called an objective function or payoff function), which gives a numeric value for the terminal states. In chess, the outcome is a win, loss, or draw, with values +1, -1, or 0. In backgammon, the payoffs range from +192 to -192.

Game Tree
The initial state and legal moves for each side define the game tree for the game. Figure 2.18 shows the part of the game tree for tic-tac-toe (noughts and crosses). From the initial state, MAX has nine possible moves. Play alternates between MAX’s placing an X and MIN’s placing a 0 until we reach leaf nodes corresponding to the terminal states such that one player has three in a row or all the squares are filled. The number on each leaf node indicates the utility value of the terminal state from the point of view of MAX; high values are assumed to be good for MAX and bad for MIN. It is the MAX’s job to use the search tree (particularly the utility of terminal states) to determine the best move.
2.4.2 Optimal Decisions in Games

In normal search problem, the **optimal solution** would be a sequence of moves leading to a **goal state** — a terminal state that is a win. In a game, on the other hand, MIN has something to say about it, MAX therefore must find a contingent **strategy**, which specifies MAX’s move in the **initial state**, then MAX’s moves in the states resulting from every possible response by MIN, then MAX’s moves in the states resulting from every possible response by MIN those moves, and so on. An **optimal strategy** leads to outcomes at least as good as any other strategy when one is playing an infallible opponent.

Figure 2.18 A partial search tree. The top node is the initial state, and MAX move first, placing an X in an empty square.
Figure 2.19 A two-ply game tree. The Δ nodes are “MAX nodes”, in which it is AMX’s turn to move, and the ∇ nodes are “MIN nodes”. The terminal nodes show the utility values for MAX; the other nodes are labeled with their minimax values. MAX’s best move at the root is a_1, because it leads to the successor with the highest minimax value, and MIN’s best reply is b_1, because it leads to the successor with the lowest minimax value.

Minimax Search: Algorithm

Figure 2.20 An algorithm for calculating minimax decisions. It returns the action corresponding to the best possible move, that is, the move that leads to the outcome with the best utility, under the assumption that the opponent plays to minimize utility. The functions MAX-VALUE and MIN-VALUE go through the whole game tree, all the way to the leaves, to determine the backed-up value of a state.

The minimax Algorithm

The minimax algorithm (Figure 2.20) computes the minimax decision from the current state. It uses a simple recursive computation of the minimax values of each successor state, directly implementing the defining equations. The recursion proceeds all the way down to the leaves of the tree, and then the minimax values are backed up through the tree as the recursion unwinds. For example in Figure 2.19, the algorithm first recourses down to the three bottom left nodes, and uses the utility function on them to discover that their values are 3, 12, and 8 respectively. Then it takes the minimum of these values, 3, and returns it as the backed-up value of node B. A similar process gives the backed up values of 2 for C and 2 for D. Finally, we take the maximum of 3, 2, and 2 to get the backed-up value of 3 at the root node. The minimax algorithm performs a complete depth-first exploration of the game tree. If the maximum depth of the tree is m, and there are b legal moves at each point, then the time
complexity of the minimax algorithm is $O(b^m)$. The space complexity is $O(bm)$ for an algorithm that generates successors at once.

2.4.3 Alpha-Beta Pruning

The problem with minimax search is that the number of game states it has to examine is exponential in the number of moves. Unfortunately, we can’t eliminate the exponent, but we can effectively cut it in half. By performing pruning, we can eliminate large part of the tree from consideration. We can apply the technique known as alpha beta pruning, when applied to a minimax tree, it returns the same move as minimax would, but prunes away branches that cannot possibly influence the final decision.

Alpha Beta pruning gets its name from the following two parameters that describe bounds on the backed-up values that appear anywhere along the path:

- α: the value of the best (i.e., highest-value) choice we have found so far at any choice point along the path of MAX.
- β: the value of best (i.e., lowest-value) choice we have found so far at any choice point along the path of MIN.

Alpha Beta search updates the values of α and β as it goes along and prunes the remaining branches at anode (i.e., terminates the recursive call) as soon as the value of the current node is known to be worse than the current α and β value for MAX and MIN, respectively. The complete algorithm is given in Figure 2.21.

The effectiveness of alpha-beta pruning is highly dependent on the order in which the successors are examined. It might be worthwhile to try to examine first the successors that are likely to be the best. In such case, it turns out that alpha-beta needs to examine only $O(b^{d/2})$ nodes to pick the best move, instead of $O(b^d)$ for minimax. This means that the effective branching factor becomes \sqrt{b} instead of b – for chess, 6 instead of 35. Put another way alpha-beta can look ahead roughly twice as far as minimax in the same amount of time.

```
function ALPHA-BETA-SEARCH(state) returns an action
  inputs: state, current state in game
  $v \leftarrow$ MAX-VALUE(state, $-\infty$, $+\infty$)
  return the action in SUCCESSORS(state) with value $v$

function MAX-VALUE(state, $\alpha$, $\beta$) returns a utility value
  inputs: state, current state in game
          $\alpha$, the value of the best alternative for MAX along the path to state
          $\beta$, the value of the best alternative for MIN along the path to state
  if TERMINAL-TEST(state) then return UTILITY(state)
  $v \leftarrow -\infty$
  for $a, s$ in SUCCESSORS(state) do
    $v \leftarrow$ MAX($v$, MIN-VALUE($s$, $\alpha$, $\beta$))
    if $v \geq \beta$ then return $v$
    $\alpha \leftarrow$ MAX($\alpha$, $v$)
  return $v$
```

Powered By www.technoscriptz.com
2.4.4 Imperfect, Real-time Decisions

The minimax algorithm generates the entire game search space, whereas the alpha-beta algorithm allows us to prune large parts of it. However, alpha-beta still has to search all the way to terminal states for at least a portion of search space. Shannon’s 1950 paper, Programming a computer for playing chess, proposed that programs should cut off the search earlier and apply a heuristic evaluation function to states in the search, effectively turning non-terminal nodes into terminal leaves. The basic idea is to alter minimax or alpha-beta in two ways:

1. The utility function is replaced by a heuristic evaluation function \(\text{EVAL} \), which gives an estimate of the position’s utility, and
2. the terminal test is replaced by a cutoff test that decides when to apply \(\text{EVAL} \).

2.4.5 Games that include Element of Chance

Evaluation functions
An evaluation function returns an estimate of the expected utility of the game from a given position, just as the heuristic function return an estimate of the distance to the goal.

Games of imperfect information
- Minimax and alpha-beta pruning require too much leaf-node evaluations. May be impractical within a reasonable amount of time.
- SHANNON (1950):
 - Cut off search earlier (replace TERMINAL-TEST by CUTOFF-TEST)
 - Apply heuristic evaluation function \(\text{EVAL} \) (replacing utility function of alpha-beta)

Cutting off search
Change:
- \(\text{if TERMINAL-TEST}(\text{state}) \) then return \(\text{UTILITY}(\text{state}) \) into
- \(\text{if CUTOFF-TEST}(\text{state}, \text{depth}) \) then return \(\text{EVAL}(\text{state}) \)
Introduces a fixed-depth limit *depth*
- Is selected so that the amount of time will not exceed what the rules of the game allow.
When cutoff occurs, the evaluation is performed.

Heuristic EVAL
Idea: produce an estimate of the expected utility of the game from a given position.
Performance depends on quality of EVAL.
Requirements:
- EVAL should order terminal-nodes in the same way as UTILITY.
- Computation may not take too long.
- For non-terminal states the EVAL should be strongly correlated with the actual chance of winning.

Only useful for quiescent (no wild swings in value in near future) states.

Weighted Linear Function
The introductory chess books give an approximate material value for each piece: each pawn is worth 1, a knight or bishop is worth 3, a rook 3, and the queen 9. These feature values are then added up to obtain the evaluation of the position. Mathematically, these kind of evaluation function is called weighted linear function, and it can be expressed as:

\[
Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)
\]

- e.g., \(w_1 = 9 \) with \(f_1(s) = (\text{number of white queens}) - (\text{number of black queens}) \), etc.

(a) Black has an advantage of a knight and two pawns and will win the game.
(b) Black will lose after white captures the queen.

Games that include chance
In real life, there are many unpredictable external events that put us into unforeseen situations. Many games mirror this unpredictability by including a random element, such as throwing a dice. **Backgammon** is a typical game that combines luck and skill. Dice are rolled at the beginning of player’s turn to determine the legal moves. The backgammon position of Figure 2.23, for example, white has rolled a 6-5, and has four possible moves.

Figure 2.23 A typical backgammon position. The goal of the game is to move all one’s pieces off the board. White moves clockwise toward 25, and black moves counterclockwise toward 0. A piece can move to any position unless there are multiple opponent pieces there; if there is one opponent, it is captured and must start over. In the position shown, white has rolled 6-5 and must choose among four legal moves (5-10, 5-11), (5-11, 19-24), (5-10, 10-16), and (5-11, 11-16).

- White moves clockwise toward 25
- Black moves counterclockwise toward 0
- A piece can move to any position unless there are multiple opponent pieces there; if there is one opponent, it is captured and must start over.
- White has rolled 6-5 and must choose among four legal moves: (5-10, 5-11), (5-11, 19-24) (5-10, 10-16), and (5-11, 11-16)
Figure 2-24 Schematic game tree for a backgammon position.

Expected minimax value

\[\text{EXPECTED-MINIMAX-VALUE}(n) = \begin{cases} \text{UTILITY}(n) & \text{if } n \text{ is a terminal} \\ \max_{s \in \text{successors}(n)} \text{MINIMAX-VALUE}(s) & \text{if } n \text{ is a max node} \\ \min_{s \in \text{successors}(n)} \text{MINIMAX-VALUE}(s) & \text{if } n \text{ is a max node} \\ \sum_{s \in \text{successors}(n)} P(s) \cdot \text{EXPECTED-MINIMAX}(s) & \text{if } n \text{ is a chance node} \end{cases} \]

These equations can be backed-up recursively all the way to the root of the game tree.